Aerosol Optical Properties Based on Ground and Satellite Retrievals during a Serious Haze Episode in December 2015 over Beijing
نویسندگان
چکیده
An extreme haze event occurred in the Beijing area from 17 to 23 December 2015. Ground-based measurements and satellite observations during this event were used to further our understanding of the formation process of haze pollution and aerosol optical properties. The results suggest that high relative humidity, poor diffusion conditions (low wind speed and stable stratification) and favorable secondary transformation conditions under the hygroscopic growth of aerosol and high emissions led to this serious haze episode. During the haze period, the daily average value was 1.15 and 0.42 for aerosol optical depth (AOD500nm) and columnar water-vapor (CWV, in cm), respectively. On 19 December, the correlation coefficient between CWV and AOD500nm was 0.91, indicating the effect of hygroscopic growth of fine-mode articles. The daily average values for Ångström exponent, fine-mode fraction, aerosol absorption optical depth, and Ångström absorption exponent were 1.19, 0.81, 0.11 and 1.47, respectively, which suggests that fine aerosol particles were dominant in the atmosphere and fine-mode particles were the dominant contributor to atmospheric extinction during the haze period. Moreover, it also reflects that there were more absorbing aerosol particles during the haze period. Compared with other polluted periods with a bimodal distribution, there was an obvious trimodal distribution on 19 December. There were three peaks at radii of about 0.1 μm, 0.5–0.8 μm and 4 μm. Satellite observations show that there was an obvious aerosol layer in the Beijing area during the haze period, concentrated at ground level to within 2 km in the upper layers. The types of aerosol were mainly composed of mixed pollution aerosols.
منابع مشابه
Aerosol Optical Properties of a Haze Episode in Wuhan Based on Ground-Based and Satellite Observations
A severe haze episode that occurred in Wuhan, central China, from 6–14 June 2012 was investigated using ground-based and satellite-derived observations, from which the optical properties and vertical distribution of the aerosols were obtained. The mass concentrations of PM2.5 and black carbon (BC) were 9.9 (332.79 versus 33.66 μg·m) and 3.2 times (9.67 versus 2.99 μg·m) greater, respectively, o...
متن کاملAerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing
The evolution of physical, chemical and optical properties of urban aerosol particles was characterized during an extreme haze episode in Beijing, PRC, from 24 through 31 January 2013 based on in situ measurements. The average mass concentrations of PM1, PM2.5 and PM10 were 99± 67 μg m (average±SD), 188± 128 μg m and 265± 157 μg m, respectively. A significant increase in PM1−2.5 fraction was ob...
متن کاملXBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation
A cloud-masking algorithm based on the spatial variability of reflectances at the top of the atmosphere in visible wavelengths was developed for the retrieval of aerosol properties by MODIS. It is shown that the spatial pattern of cloud reflectance as observed from space is very different from that of aerosols. Clouds show a very high spatial variability in the scale of a hundred metres to a fe...
متن کاملA Quantitatively Operational Judging Method for the Process of Large Regional Heavy Haze Event Based on Satellite Remote Sensing and Numerical Simulations
In recent years, large-area heavy haze pollution cases occur frequently in eastern China, especially evident in Beijing-Tianjin-Hebei and the surrounding regions. In order to operationally monitor the process of larger regional heavy haze events, a type of quantitative method based on satellite remote sensing and numerical simulations was first established and applied in multiple heavy haze pro...
متن کاملAerosol Optical Depth Spatial and Temporal Variability Using Satellite Data Over Indian Major Cities
Introduction: The study’s main aim is to investigate the long-term variation of Aerosol Optical Depth (AOD). It also aims to show the relationship between meteorological parameters. This study evaluates long-term (2010 to 2021) special and temporal changes over major Indian regions using satellite-based data from NASA’s Terra Satellite. Materials and Methods: This study was carried out during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016